If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.0072v^2+0.9v=38
We move all terms to the left:
0.0072v^2+0.9v-(38)=0
a = 0.0072; b = 0.9; c = -38;
Δ = b2-4ac
Δ = 0.92-4·0.0072·(-38)
Δ = 1.9044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.9)-\sqrt{1.9044}}{2*0.0072}=\frac{-0.9-\sqrt{1.9044}}{0.0144} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.9)+\sqrt{1.9044}}{2*0.0072}=\frac{-0.9+\sqrt{1.9044}}{0.0144} $
| 4-2(r-5)=r-19 | | 14+4x=30 | | 5-2v=8 | | 5s-53=2s-8 | | 6=¼(x+4) | | 5y+3=22 | | 12-(2+3a)=2a+5 | | s-15=2-47 | | 25+x/2+18=90 | | 25.68=2x+32 | | 15^(2n-3)=245 | | 2u-7=5u-82 | | 15^(2n-3)=25 | | 0.51=2-p | | C=5/9(f41) | | 5x-2(2x+1)=-x-6+3x | | x÷3=30 | | -0.0009x^2+0.002x+45=0 | | -x–2=-3 | | -0.009x^2+0.002x+45=0 | | ⅙(x-12)=12 | | 3x–4=-7 | | 1/6(x-12)=12 | | -3/2+1/3w=-6/7 | | 1-21/w=-6 | | 5(z-4)=2(2z+4 | | -6=-4-v | | 0.5(4x-1)=8 | | (2x-7)/3=0 | | 27^3n=81^2n+1 | | 3/2w-5/2=-w-2/5 | | 35=2x=-15 |